循环小数教案

时间:2024-01-30 17:21:37
循环小数教案

循环小数教案

作为一名为他人授业解惑的教育工作者,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?以下是小编收集整理的循环小数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

循环小数教案1

教学内容:P27、28例8、例9、课文,P30练习五第1、2题。

教学目的:

1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学重点:掌握循环小数、无限小数、有限小数的意义。

教学难点:掌握循环小数的简便记法。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3、总结概括循环小数的意义

其他除法算式会不会出现这种情况呢?请同学们算一算:28÷18 78.6÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样样?能除尽吗?(请生板演计算结果)

观察例8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?并说一说理由。

0.999… 52.52525… 4.1677… 3.212121… 3.1415926…

学生评议。

5、介绍简便记法

除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333…还可以写作5.3,7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:1、商的小数部分位数是有限的,叫做有限小数;2、商的小数部分倍数是无限的,叫作无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、小结:这节课我们学习了哪些知识?能用自己的话说说你是怎样理解这些概念的吗?

三、巩固练习

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷111.08÷3.313.25÷10.6

四、作业:P30第1、2题。

课后小记:

学生在预习后提出如下一些需要思考的问题:

1、这道题能除尽吗?

2、为什么它除不尽?为

3、计算结果该如何表示?

4、什么是循环小数?

带着这些疑问,本课的教学顺利地推进。这些问题也均在教学中得到了解决。

但在练习中出现了以下几种常见错误:

1、在竖式中在第一个循环节上也打了循环节的圆点。

2、在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。

3、在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2。01212……学生除到2。0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。

针对上述前两个错误,以后再教板书时我应强调格式与写法。特别是P28页下方的‘你知道吗”其中有关循环节的介绍及“写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个圆点”应让所有学生掌握。

循环小数教案2

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8times;0.5= 4times;0.25= 1.6+0.38=

0.15divide;0.5= 1-0.75= 0.48+0.03=

(二)计算

21divide;3= 15divide;3= 12divide;3= 10divide;3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例7 10divide;3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10divide;3=3.33……

……此处隐藏12885个字……p>(二)计算

21/3=15/3=12/3=10/3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例710/3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10/3=3.33……

(二)教学例8

例8计算58.6/11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6/11=5.32727……

3.观察比较10/3=3.33……58.6/11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353……0.19292……8.4666……

(三)教学例9

例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130/6=21.666……

asymp;21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28/182.29/1.1153/7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3/2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10/3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7/914.2/115/810/7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090……0.0183838……

0.4444……7.275275……

四、布置作业

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

循环小数教案15

首先出个问题,假设给你一个小数(无限循环小数),你能说出小数点后第10000位的数字是几吗?10000位?是在开玩笑吗?数都要数好久。其实用心点的同学们就已经知道了,这个数字肯定是有一定的规律可寻的,不然,真的就是死记硬背的数学了。

每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。

教案分析:

阿尔法趣味数学课程教案是通过对小学数学课本上的知识点分析和趣味故事相结合,让同学们感知到数学其实还挺有趣的。培养孩子学习数学的兴趣、逻辑思维能力和独立解决问题的能力。

教案要求及解读:

老师通过趣味小故事的形式引导同学们在游戏中学习。

教学目的:

了解和认识无限循环小数的意思及其特点,规律,学会在什么场景下使用循环小数;

了解除法中商的小数部分的特点。

适合年级:小学五年级

教学重点:认识循环小数。教学难点:循环小数的循环节和循环点。循环小数的意思:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像:5.333…和7.14545…都是循环小数。一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节、例如:

5.333…的循环节是3。

7.14545…的循环节是45。

6.9258258…的循环节是258。

写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:

教学过程:

老师:同学们,最近你的数学学习进步很大呀,我来考你们一道题吧。5÷7等于多少?

学生:这么简单呀,约等于0.71

老师:说准确点!小数点后第1000位的数字是几?

学生:啊!这个可难住我们了,到底是多少呀,老师给我们讲讲吧。

老师:这道题的得数是个无限循环小数:5÷7=0.714285714285......

循环小数是有循环节的,循环节首尾相接循环出现。仔细看"714285"这6个数字在不断循环。那循环节就是它们6个了!这样就好算第1000位是多少了。1000÷6=166……4,循环节在到第1000位的时候循环了166次,并余下4个数字,那么从循环节开始往后数第4位就是2。

学生:哦,也就是小数点后第1000位的数字应该是2.

老师:那我再问你们,前1000个数字的和是多少?

学生:是4496,哈哈,你考不倒我。这个得数是经过166次循环再加上余下的4位数字得到的。那么这个小数的循环节的和是7+144+2+8+5-27,那么166 × 27=4482;剩下的4个数字之和是7+1+4+2=14,所以前1000个数字之和就是4482+14=4496。

思维挑战:

你学会这种方法了吗?来试试吧:计算5÷13的商的小数点后面第1000位的数字是多少?

提示:解答这道题要注意:一是5÷13的商要算准确,否则就无法求出第1000位的数字;二是要找准商的循环节,看清循环节有几个数。

教案总结:

无限循环小数是由小数除法的商产生的,学习无限循环小数的前提是要掌握好除法,商和余数。

课后思考:

计算5÷13的商的小数点后面第10000位的数字是多少?

无限小数一定比有限小数大。

无限小数都是循环小数。

循环小数都是无限小数。

0.66666是循环小数。

一个小数不是有限小数,就是无限小数。

《循环小数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式