求比一个数少几的数教学反思
作为一名人民老师,教学是我们的工作之一,通过教学反思可以快速积累我们的教学经验,那要怎么写好教学反思呢?下面是小编整理的求比一个数少几的数教学反思,欢迎阅读,希望大家能够喜欢。
求比一个数少几的数教学反思1今天的数学课是求比一个数多(少)几分之几的数是多少的解决问题,这是分数乘法一章的一个难点。特别是要教会学生利用线段图来辅助自己理解题目,理解并会用两种方法计算该题。
由于我班的计算基础较差,所以我在课始让学生做了20道分数加减法口算题,有一部分学生错误较多。接着我回顾了前面的所学知识,进入今天的内容。我由例题中的关键句入手,并结合线段图进行讲解,力争让学生通过线段图理解题目及做法。
从本节课来说需要改进的地方。教学没有铺垫,只是简单的读了一遍题目就开始讲解,如果能够多设计几个与课程相关的题目引入将对后面的教学有更好的帮助。教师没有引导学生自己发现关系讲解过多。教学中最最失误的地方是教学的重点没有很好的突破,应该让学生充分的去理解两个量之间的关系,应该是把谁看作单位一。
我想本课失误的原因主要出在这几方面:一,重点突破主要是在于个人不能很好的领悟编者所要表达的意思,领悟编者意图,发挥教材的最大价值,开发出学生的最大潜质。二,贝壳不充分,细节注意不到位。第三,没有调动学生的积极性,课堂参与度不高。
所以从长远来说在教学方面需要加强的是对专业素质的提升,加强对教材的研读,对教学知识体系的把握。从个人素质上来说需要加强的就太多太多了。
求比一个数少几的数教学反思2《求一个数比另一个数多(少)百分之几》是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。
《求一个数比另一个数多(少)百分之几》教学中,我注重了以下几个方面:
一、 创造性地使用教材,促进数学活动的有效开展。
教材围绕这一知识点,只编排了一个例题(例2)、让学生理解表达增加或减少幅度的语言、“做一做”和一个练习(练习二十一)。根据本班实际,我安排两节课授完。这节课是第一节课,属新授课。教学时,我并没有照本宣科的讲解书上的例2,而是首先课件出示信息:“原计划造林12公顷,实际造林14公顷。”让学生提出有关百分数问题再解答,从而培养了学生的问题意识,且复习巩固了已学知识,接着引出问题“实际造林比原计划造林多百分之几?”改编成例2,导入新课;教学例2后,改变例2的问题,让学生解答“原计划造林比实际造林少百分之几?”再与例2比较,让学生弄清由于问题变了,单位“1”就有了变化,列式也就不同了,自然结果就不一样。不但巩固了所学知识,而且预防了“负迁移”的产生。
二、组织有效的互动交流,引导学生自主探究知识。
“数学课程标准”指出“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。”
不管复习,还是新授、巩固,练习题都是先让学生独立试算,再进行互动交流。如,新授时,根据课件出示信息,启发学生提出问题“实际造林比原计划造林多百分之几?”后,让学生说出含义“实际造林比原计划造林多的公顷数占原计划造林的百分之几”,接着让学生试算,然后,让学生交流解答方法、总结规律,我随机予以点评。就是在这样一系列有效的互动交流过程中让学生自主探究获得知识的。
三、 注重能力的培养,促进学生的发展。
一是培养问题意识。复习旧知时,我并没有出示完整的题,而是课件出示信息:“原计划造林12公顷,实际造林14公顷。”让学生提出有关百分数问题再解答。教学例2和改编例2也一样,先让学生提出问题,培养问题意识。
二是注重了自主探究和合作交流能力的培养。教学中大胆放手让学生独立试算后合作交流,让学生自主发现问题,理解问题,解决问题。
三是注重了学生思维能力的培养。
小学六年级学生抽象思维能力正初步形成。本节课,我让学生根据例2得出:求“实际造林比原计划造林多百分之几?”就用“实际造林比原计划造林多的除以原计划的”;再根据改变的例2得出:求“原计划造林比实际造林少百分之几?”就用“原计划造林比实际造林少的除以实际的”;然后引导学生归纳得出:“求一个数比另一个数多(或少)百分之几” 就用“相差数除以单位‘1’的数”这一规律。
发散思维能力的提高有助于学生创新能力的形成。在教学时,我总喜欢问学生“还可以怎么算?”启发学生求异、发散思维。如:例2,学生“(14-12)÷12”这样算后,启发学生这样思考:先求“实际造林占原计划造林的百分之几”,再求“实际造林比原计划造林多百分之几?”列出算式“14÷12-1”。
四、注重了教学反思,引导学生形成反思意识。
下课前,我安排了几分钟时间,留给学生说说本节课有什么收获,还有什么问题?采取让学生自由发言,相互补充的形式进行交流。有的说学会了解答“求一个数比另一个数多(或少)百分之几”这类问题的方法;有的说进一步明确了百分数的意义;有的说知道了甲数比乙数多百分之“几”,乙数不会比甲数少百分之“几”,因为单位‘1’不同;还有的说保护环境十分重要,我们从小要树立环保意识;还有的说“求一个数比另一个数多(或少)百分之几”这类问题的第二种解法掌握得还不太熟练,还得加强练习。等等。使学生从感性认识上升到了理性认识。进一步提高了教学效果。
求比一个数少几的数教学反思3“求一个数比另一个数多几或少几”学生学习这一内容时是在已有的知识基础上一年级(上册)学习的从总数里去掉一部分,求还剩多少的实际问题,以及减法的含义。经验基础是生活中比较两种物体的个数谁多、谁少,多几个或少几个。教学的重点是让学生理解并掌握求两数相差多少的实际问题的算理和算法。
上完课后,虽然教学效果还可以,但我觉得这节课上得还不够完美,存在一些不足之处,有待进一步改进,具体如下。
第一,在引导学生理解“求一个数比另一个数多几或少几”为什么用减法计算的意义不够透彻,求红花比蓝花多多少个,就是求13比8多多少个,要求13比8多多少个,就要从13个里面去掉8个。剩下的就是13比8多的个数。13-8=5(个)。虽然教参书上只是这样要求,但还是应该适当强调13是红花的个数,减去的8是红花与蓝花同样多的个数。这样就能学生更加清楚理解用减法计算(13-8=5)的意义。
第二,教学过程中课堂气氛不够活跃。一方面,教学语言不 ……此处隐藏5184个字……量在比多比少,是用减法计算,第二种说法是“分率”比多少,是用相差量除以单位“1”的量来求。
生2:现在每月用水比原来每月用水节约百分之几和原来每月用水比现在多百分之几的单位“1”不同。
生3:单位“1”不同,除数就不同,结果也不一样。
……
【片段反思】
练习至少应该关注两个方面,一是练习的素材要简洁,有利于学生快速读懂题目,以达到巩固和内化所学知识,将所学知识转化为解决问题的能力的目的;二是练习的组织要有深度,要通过追问,引领练习走向深入,有利于促进学生的发展。然而很多的课堂,练习设计形式多样,素材广泛,很容易吸引学生的眼球,激发学生的兴趣,但组织练习的过程却过于简单,形如放电影,缺乏深度。
上述片段中,练习的素材简单,教师在设计练习时并没有另辟蹊径,而是利用了教材中的“做一做”,但是又没有止步于课本中的练习,而是通过追问让练习充溢理性,富有深度。片段中通过“现在每月用水比原来节约1吨,也就是原来每月用水比现在……?(多1吨)”和“现在每月用水比原来节约10%,也就是原来每月用水比现在……?(多10%)”引起了学生的质疑,引出了同素异构对比练习:小飞家原来每月用水10吨,更换了节水龙头后每月用水约9吨,原来每月用水比现在多百分之几?学生动笔解答的过程就是一个释疑的过程。通过追问“为什么第一种说法可以,第二种说法就不对呢?”引导学生沟通了“量”与“率”的异和同,突显了“求一个数比另一个数多(少)百分之几”应用问题的本质,增加了学生思维的厚度,拓展了学生思维的高度。这样的练习素材相同,问题不同,既巩固了学生对所学知识的理解,又激发了学生的思维,效果更好。
因此,我认为追问可以将教材中的练习引向深入,拓展练习的价值,让教材中简单的“做一做”,既有模仿巩固的基础性,更有充溢理性思考的深度。
片段二、同素同构:对比——丰满“血肉”,回归简单。
师:请大家静静的完成下面两题。
(1)小飞家原来每月用水10吨,更换了节水龙头后每月节约用水约1吨,每月用水比原来节约了百分之几?
(2)小飞家更换了节水龙头后每月用水约9吨,比原来每月节约用水约1吨。每月用水比原来节约了百分之几?
学生独立解决后反馈。
生1:第(1)题1÷10=0.1=10%。
生2:第(2)题1÷(9+1)=0.1=10%。
生3:第(2)题(9+1-9)÷(9+1)=0.1=10%。
生4:第(2)题已经知道了相差量是1吨,可以直接用1÷(9+1)=0.1=10%。
师:好,审题很仔细。仔细审题,看清每个条件可以使解题过程更简洁。
师:仔细观察,上面两个题目有哪些相同的地方和不同的地方?
生1:都知道了相差量是1吨。
生2:都是求每月用水比原来节约了百分之几。
生3:单位“1”都是原来每月用水吨数。
生4:答案都是10%。
师:大家说的都是两个问题的相同点,这两个问题又有什么不同呢?
生5:第(1)题知道了单位“1”的量,是原来每月用水10吨,第(2)题没有直接告诉单位“1”的量,要先求。
生6:第(1)题是直接除以10,第(2)题则是除以1与9的和。
……
在上面两个问题的后面再呈现已解决的问题:(3)小飞家原来每月用水10吨,更换了节水龙头后每月用水约9吨,每月用水比原来节约了百分之几?
师:请再仔细观察,静静思考,第(1)(2)两题和第(3)个问题有什么相同和不同?
生1:都是求“每月用水比原来节约了百分之几”。
生2:单位“1”相同,结果也相同。
生3:解决问题的方法都是用相差量除以单位“1”的量。
生4:我认为不同的地方是前面两个问题知道了相差量,第(3)题不知道相差量。
……
师:你认为解决这样的百分数应用问题时要注意什么?
生1:要找准单位“1”,用单位“1”的量作除数。
生2:要看清楚知道的是什么。
生3:如果相差量知道了就直接除以单位“1”的量,不知道相差量就要先求相差量,再除以单位“1”的量。
生4:单位“1”的量没有直接告诉也要先求。
……
【片段反思】
练习的设计下要保底,上不封顶,所谓保底就是通过练习要能让所有学生都能学有价值的数学,做到基础人人过关;所谓不封顶就是通过练习要能促进不同学生在数学上获得不同发展,使学有余力的学生获得更大程度的提升。
上述片段中,练习的素材相同,问题相同,只是条件表述不同,却充分体现了练习的层次性,拓展了学生的思维宽度。第(1)题知道了相差量1吨和单位“1”的量10吨,直接用“1÷10=10%”就解决了问题,可以说是很简单。第(2)题同样知道相差量1吨和相同问题“每月用水比原来节约了百分之几?”,但是没有直接告诉单位“1”的量,要用“1+9”求出单位“1”的量,部分学生却在解答过程中绕了一大圈,教师并没有急于点拨,而是等待学生自己发现解决问题的简洁方法。通过比较两个问题的相同点和不同点,进一步深化了对这类问题本质的理解。并再次通过对三道求“每月用水比原来节约了百分之几?”问题的比较,固化了这类应用问题的本质,即都是用“相差量÷单位“1”的量”,区别只在于条件表述的不同。这样课本练习更加丰满厚实,同时又易于学生掌握,感觉到练习简单,有效的促进了学生将知识转化为解决问题的能力的形成。
因此,我认为练习的组织宜在追问中走向深入,宜在比较中走向简单。教师要善于捕捉学生的信息,及时跟进追问,增加练习的含量,同时要引领学生通过比较,在思维碰撞的过程中把握所学知识的本质,让练习变得更简单。这样简单的练习便会充溢理性,促进学生思维水平和解决问题能力的提升。
【讨论与思考】
如何吃透教材中的练习?使教材中素材和形式单一的练习“做一做”有深度、有层次性?是我们一线教师的追求。简洁的情境是不是一定就好,简单的练习走向深入再回归简单是不是具有推广的价值,有待于进一步探索。
1、如何“放大”教材中的练习?
教材中紧跟例题而提供的“做一做”练习往往素材和形式单一,有些素材还会偏离学生的经验,这些都有待教师进行加工处理。怎样才能吃透这样的练习呢?我想关键是把握准教学的重点,围绕教学重点组织练习,深度挖掘练习的价值,通过追问将简单的模仿性练习引向深入,通过比较透视数学本质,让练习回归简单,就能达到形散神聚的效果。
2、如何把握“放大”的度?
只要吃透教材,动态组织练习,就能“放大”教材习题,挖掘出教材习题蕴含的价值。如何把握“放大”教材习题的度?我想练习的目的应该是厚实基础,形成技能,发展思维,只要能确保练习保底的实效,让学生跳一跳能摘到桃子,“放大”是可以不封顶的,关键是教材习题“放大”后要逐层引导学生思维回归知识的原点。