【推荐】数学说课稿初中集合五篇
作为一位杰出的教职工,通常需要准备好一份说课稿,借助说课稿可以有效提升自己的教学能力。那么大家知道正规的说课稿是怎么写的吗?下面是小编为大家整理的数学说课稿初中5篇,希望能够帮助到大家。
数学说课稿初中 篇1今天我说的课题是“向量的直角坐标运算”,主要研究两类问题:
1、向量的直角坐标运算
2、培养学生的创新精神和实践能力,履行“以学生发展为本”的教育思想。
下面我从三个方面阐述这节课。
第一方面:教材分析
本节的授课内容为“向量的直角坐标运算”,选自人教版中等职业教育国家规划教材《数学》(提高版)第一册第六章第六节,我从四个方面进行教材分析。
(一)教材的地位和作用
向量的直角坐标运算是向量的重要内容,它使向量的运算完全数量化,将数与形紧密地结合起来,使得用向量的方法解决几何问题更加方便,从而极大地提高了学生利用向量知识解决实际问题的能力。
同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的能力具有重要意义。
(二)教材的处理
结合教学参考书和学生的学习能力,我将“向量的直角坐标运算”安排为两课时。本节为第二课时。
根据目前学生的状况以及以往的经验,我发现,虽然这节课的内容比较简单,但由于以前教师讲解得过多,导致学生丢失了很多重要的知识。为了激发学生的学习热情,我采用复习提问的形式,师生共同得出向量线性运算的直角坐标运算法则和一个向量的坐标等于向量的终点坐标减去始点相应坐标的结论,直接切入本节课的知识点。之后,由浅入深、由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标运算的记忆和理解。
由此,我对教材的引入、例题和练习做了适当的补充和修改。
(三)教学重点和难点
根据学生现状、教学要求以及教材内容,我确立本节课的教学重点为:使学生熟练地掌握向量的直角坐标运算。
由于学生的实际情况──运用所学知识分析和解决实际问题的能力较差,我把本节课的难点定为:向量直角坐标运算的应用。
要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。
(四)教学目标的分析
根据教学要求、教材的地位和作用以及学生现有的知识水平和数学能力,我把本节课的教学目标确定为以下三个方面。
1、知识教学目标
能准确表述向量线性运算的坐标运算法则;明确一个向量的坐标等于向量的终点坐标减去始点的相应坐标;掌握用向量的直角坐标运算解决平面几何问题的方法。
2、能力训练目标
培养学生观察、分析、比较、归纳的能力及创新能力;培养学生运用数形结合的方法去分析和解决问题的能力。
3、德育渗透目标
通过学习向量的直角坐标运算,实现几何与代数的完全结合,让学生明白:知识与知识之间、事物与事物之间的相互联系和相互转化;通过例题及练习的学习,培养学生的辩证思维能力,养成勤于动脑的学习习惯。
第二方面:教法与学法分析
现代教学论指出:“教学是师生的多边活动,在教师进行‘反馈—控制’的同时,每个学生也都在进行微观的‘反馈—控制’。”由于任何教学都必须通过学生自身的学习建构才有成效,故本节课采用“发现式教学法”来组织课堂教学。这样,可充分调动学生的学习积极性和能动性,突出学生的主体作用。
在教学中借助于计算机课件辅助教学。
第三方面:教学过程
共分为六个环节,具体的时间安排如下:复习提问约4分钟,导入新课约6分钟,创设问题约30分钟,小结约3分钟,布置作业约2分钟。
(一)复习提问
(1)向量在直角坐标系中坐标的定义是什么?
(2)若o为原点,则点A的坐标与向量的坐标之间的关系是什么?
(3)如果两个向量相等,那么这两个向量的坐标需满足什么条件?
课堂教学论认为:“要使教学过程最优化,首先要把所学习的知识和学生已有的信息联系起来”。通过这三个问题的复习就可以使学生在学习新的知识前,获得适当的知识积累。
(二)导入新课
在教学过程中,我提出两个问题:
问题1 已知a=a1e1+a2e2,b=b1e1+b2e2,(e1、e2为直角坐标系的基底)
1、则a,b的坐标为……。
2、求a+b,a—b,λa。
3、求a+b,a—b,λa的坐标。
问题2已知A=(x1,y1),B=(x2,y2)。
1、则,的坐标分别为……。
2、化简。
3、求的坐标。
这两个问题由师生共同练习完成。
通过师生间的相互讨论、相互启发、相互合作,达到温故知新的目的,也由低级到高级的认知顺序引出本节课的知识点,这很自然,学生比较容易接受,容易激发学生发现向量直角坐标运算规律的强烈欲望。
(三)创设问题
这是本节课的核心。根据循序渐进、由浅入深的教学原则,我设计了三个层次的问题。
第一层次:先由师生共同归纳总结由问题1、2得出的结论,培养学生观察、分析、比较、归纳的能力。
由问题1我们得到结论1:
a+b=(a1+b1,a2+b2),
a—b=(a1—b1,a2—b2),
λa=(λa1,λa2)。
用语言叙述为:
两个向量的和与差的坐标分别等于两个向量相应坐标的和与差。
数乘向量的坐标等于数乘向量相应坐标的积。
由问题2我们得到结论2:
=(x2—x1,y2—y1)。
用语言叙述为:
一个向量的坐标等于向量终点的坐标减去始点的相应坐标。
这两个结论是向量直角坐标运算的规律,为本节的知识点。为加深认识,我又安排了练习1。
练习1(口答)下列说法是否正确:
(1)已知向量a=(—2,4),b=(5,2),
则:①2a=(—4,4),2b=(5,4)。②2a=(—4,8)。
(2)已知A(2,1),B(3,8),则=(—1,—7)。
①让学生注意数乘向量的坐标等于数乘向量相应坐标的积。
②提醒学生区分点的坐标和向量坐标,两者是不同的概念。
上述(2)小题让学生明确一个向量的坐标等于向量终点坐标减去始点的相应坐标,而不等于始点坐标减去终点的相应坐标。
第二层次:设计练习2、3、4。
练习2 已知如下向量a、b,求a+b,a—b,3 ……此处隐藏5969个字……学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。
4、 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。
5、 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。
数学说课稿初中 篇5一.说教材
教材分析
《轴对称图形》这课选自义务教育课程标准实验教科书《数学》三年级下册。教材在编排上从具体到抽象、从感性到理性、从实践到理论,指导同学们感知图形的轴对称现象,层次分明,循序渐进。
对称是一种基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。在自然界和日常生活中具有对称性质的事物很多,同学们对于对称现象并不陌生。例如,许多艺术作品、建筑设计中都体现了对称的风格。对称的物体给人一种匀称、均衡的美感。
教材从同学们熟悉的事物入手,通过形式多样的活动,让同学们初步感知生活中的对称现象,进而认识简单的轴对称图形和对称轴,为同学们今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法对图形进行变换或设计图案打好基础。教材是按照知识引入——概念教学——知识应用的顺序逐步展开的,体现了知识的形成过程。教材先通过天安门、飞机、奖杯的实物图让同学们观察、分析他们的共同特点,引出“对称”的概念。接下来教材将这几样物品抽象为平面图形,引导同学们通过对折发现轴对称图形的基本特征,并初步描述了轴对称图形的概念。教材还在图中出现了“对称轴”这一名词,但没有给“对称轴”下定义或作出描述,只是让同学们有所认识。
第二道例题则让同学们利用刚掌握的轴对称图形的初步知识,“做”出轴对称图形。通过这些活动,帮助同学们进一步积累感性认识,丰富对轴对称图形的体验,锻炼同学们的实践能力。
“想想做做”中,通过一系列的习题,加深同学们对轴对称图形的认识。其中第3题在方格纸上提供一个轴对称图形的一半,要求画出它的另一半,使同学们有机会再一次在操作中体会轴对称图形的特征。在“想想做做”后面,还安排了“你知道吗”,介绍自然界中一些对称现象以及世界上一些著名的对称的建筑,以进一步拓展同学们的知识视野,帮助同学们体会“对称”的科学与美学价值。
学情分析
轴对称现象是同学们新接触的一个知识点,这种现象广泛蕴涵在大自然中,学习这部分的知识,要求同学们具备观察能力和动手操作能力。
说教学目标
1.知识目标:使同学们感知现实世界中普遍存在的轴对称现象。通过观察、操作等活动,自主探求轴对称图形的特征,理解对称轴的含义,感受数学的美。
2.能力目标:在活动中培养同学们从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达、思维能力与探索意识,发挥同学们的想像力、创造力,激发同学们的审美观点,培养同学们创造美的能力。
3.情感目标:让同学们在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发同学们学好数学的欲望。
教学重点:理解轴对称图形的特征
教学难点:掌握辨别轴对称图形的方法
二.说教法
陶行知先生说过这样一句话:“我们要活的书,不要死的书;要真的书,不要假的书;要动的书,不要静的书;要用的书,不要读的书。总起来说,我们要以生活为中心的教学做指导,不要以文字为中心的教科书。”在数学教学中,从生活中同学们感兴趣的物体出发,强有力的吸引住了同学们,让同学们体会数学与生活的紧密联系;为同学们创设探究学习的情境;同时根据教材的编排和儿童的心理特点和思维特点,这节课准备采用观察发现,小组讨论,合作学习发现的方法,培养同学们的探究能力和合作能力。
三.说学法
新课程标准指出:同学们是学习的主体。要让同学们成为真正的主人,就必须在数学活动中学习数学,也就是在创造数学中学习数学。本课从具体的同学们感兴趣的物体中,让同学们自己发现问题,提出问题,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高同学们解决问题的能力,巩固所学知识。
四.说教学过程
我先从孩子们感兴趣的玩导入,在教师与同学们共同玩的过程中拉近我和同学们的距离,达到了寓教于乐的目的。 这节课的一开始,我先通过剪出一个“爱心”图,来吸引同学们的注意力,激发同学们的兴趣,并且也能比较自然地揭示这节课的课题。
接下来,出示例题中的图片,让同学们通过仔细观察,并且自己动手折一折,来发现这些物体是对称的,揭示出“完全重合”这样一个概念,使同学们初步感知到平面图形的对称性,随后,让同学们继续动手折纸,进一步揭示出“轴对称图形”的概念,以及让同学们初步了解对称轴。
然后给出一些同学们知道的几何图形和其他图形,即课本中的“试一试”,同样采用小组合作,共同探讨的学习方法,来解决问题。这样设计,能充分调动同学们的各种感官参与学习,既发挥了同学们的解决问题的主动性,又培养了同学们的发散思维,同时一定难度的图形判断,让同学们在跳一跳的前提下才摘到他要的果实,激发同学们爱动脑筋,勇于探索。
同学们学习完了“试一试”,此时同学们对轴对称图形已经有了不少的认识,这时,就需要一些习题和游戏来巩固前面所学的知识,我安排了“找一找”、“做一做”、“猜一猜”三个环节,“找一找”就是课本中的“想想做做”第一题、第五题和第六题,主要是让同学们来判断哪些图形是轴对称图形,这两道题主要是为了让同学们进一步的巩固对轴对称图形的认识,能准确地判断出一个图形是不是轴对称图形。“做一做”就是课本中的例题2,让同学们自己动手来制作出轴对称图形,给了同学们自我表现、自我创造的空间,有利于培养同学们积极的学习态度和学数学的亲切感,也有利于培养同学们对美的感受能力。“猜一猜” 是在给出轴对称图形的一半的基础上,让同学们猜出这个图形的形状。在这一题上是由简到难,层层递进。这既能调动同学们的积极性,又能使同学们进一步加深对轴对称图形以及对称轴的认识。
最后,我安排了一个“欣赏图片,情感体验”的环节,用课件展示出一系列美丽的轴对称图形,让同学们充分地享受这些美丽的轴对称图形带来的视觉上的冲击,感受美、欣赏美。在这节课的最后,我用一个轴对称的汉字——“美”来进行总结,并将课题补充完整,美丽的轴对称图形。
全课设计,力求做到符合同学们的认知特点,想方设法创设生动活泼的教学情境,使同学们始终处于好奇、好学的学习情绪中,让每一位同学们都学有所得,都体会到成功的喜悦。