多边形的内角和说课稿

时间:2024-05-21 09:50:17
多边形的内角和说课稿

多边形的内角和说课稿

作为一名老师,常常要写一份优秀的说课稿,借助说课稿可以让教学工作更科学化。那么什么样的说课稿才是好的呢?以下是小编为大家整理的多边形的内角和说课稿,仅供参考,希望能够帮助到大家。

多边形的内角和说课稿1

各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是人教版,七年级下册第七章第三节的内容,分两课时,我今天说的是第二课时。对本节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计、教学评价设计六个方面进行阐述。

一、背景分析

1、学习任务分析:

《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的重点。

2、学生情况分析:

(1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。

(2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。

二、教学目标设计

依据新课标的要求,我设计本节课的教学目标为以下四个方面:

知识与技能:

通过实验探索多边形内角和公式。

数学思考:

1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。

解决问题:

通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。

情感态度:

通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。

三、课堂结构设计

整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。

四、教学媒体设计

七年级学生思维活跃,容易接受新鲜事物,对直观的东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出重点突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。

五、教学过程设计:

1、创设情景:

我设计了两个情景:

情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。

情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的已有知识的联系,有助于后继问题的解决。也易于学生接受。

2、建立模型:

活动1:

猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”——即通过添加辅助线的方法,把四边形分割成三角形。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。

想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

活动3:

想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于 ……此处隐藏9280个字……多少度?外角和等于多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?

(2)问题:任意四边形的内角和等于多少度呢?你是怎样得到的?你能找到几种方法?

(3)学生思考,并分组交流讨论,教师深入小组参与活动,指导、倾听学生交流。

(4)学生分组选代表展示小组的探索成果,师生共同进行评判,对学生找到的不同方法要加以及时肯定。

学生可能找到以下几种方法:①“量”—即先测量四边形四个内角的度数,然后求四个内角的和;②“拼”—即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”—即通过添加辅助线的方法,把四边形分割成三角形。

教师在学生展示完后提问:①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?

先回顾三角形、正方形和长方形的内角和,促使学生对新问题进行思考与猜想。

从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,鼓励学生找到多种方法,让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。

通过交流,让学生用自己的语言清楚地表达解决问题的过程,可以提高语言表达能力

多边形的内角和说课稿6

各位评委、老师:

早上好,我今天说课的题目是:华东师大版七年级数学第八章《多边形》的第三节“多边形的内角和” 。说课内容包括教材分析、教学目标、教法分析、过程设计和评价分析五个部分。

一、 教材分析

1、教学内容

“多边形的内角和”一节包括的内容主要有多边形的有关概念以及多边形内角和公式的推导和运用。

2、本章及本节的地位与作用

本章《多边形》,探索的是三角形和多边形的有关概念和性质,是学生在上学期初步认识和感受空间图形之后的延伸,也为今后进一步学习各种多边形打好基础。

本节课“多边形的内角和”作为本章的一个重点,是三角形有关知识的拓展,学习四边形的基础, 公式的运用还充分地体现了图形与客观世界的密切联系。

3、重点与难点

多边形内角和的公式及公式的推导和运用是本节课的重点; 因为公式的得出可以用多种不同的方法推导, 所以我确定本节课的难点是如何引导学生通过自主学习, 探索多边形内角和的公式。

二、教学目标

根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:

知识目标:

① 识别多边形的顶点、边、内角及对角线;

② 理解多边形内角和公式的推导过程;

③ 掌握多边形内角和公式的内涵及其运用。

能力目标:

① 培养学生类比归纳、转化的能力;

② 培养学生观察分析、猜想和概括的能力。

思想情感目标:

通过体会数学图形的美感,提高审美能力, 树立认识数学来源于生活,又服务于实践的观点。

三、教法分析

在教法上树立以学生为本的思想,通过创设问题情境,启发引导学生观察----分析----猜想----概括,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性。

学法指导是培养学生学习能力的关键,本节课针对学生的认知规律,指导他们动手操作、交流合作,体验发现问题、探索问题和解决问题的学习过程。

教学手段上采用多媒体辅助教学,通过直观演示,更好地实现了“数形结合”的教学,切实有效地提高了课堂教学的效果。

四、过程设计

1、创设问题情境,引入新课

我是这样设计问题的:

在一个平面内,把一个三角形的三个顶点固定,一边套上橡皮筋往外拉成一条折线,该折线与三角形的另外两边围成一个什么图形?再把橡皮筋的一边又往外拉,再固定, 又围成什么图形?……不断地向外拉,结果围成什么图形?

如果上述情况不是往外拉而是往里推,那是什么图形?

在学生的回答中引出主题:今天我们来学习多边形的有关知识.

(板书: 多边形的内角和)。

因为前面已经学过三角形的有关知识, 从学生熟悉的情境入手引入新知识, 更能引起学生的学习兴趣, 启发思考: 多边形与三角形有什么密切的联系呢? 渗透了互为转化的思想。

2、新课学习:

(1)基本概念

我把新课的引入过程作为本节课一条主线,各环节都围绕着这条主线展开。

首先告诉学生:我们往外拉得到的这些图形称为凸多边形,你能给往里推得到的多边形起个名字吗?怎样区别这两种图形呢?把凹多边形与凸多边形从分割的角度来区别,指出暂时研究的只是凸多边形。

帮助学生复习三角形的有关概念,类比得出四边形、五边形、… n边形的定义,识别多边形的顶点、边及内角,并会表示出一个多边形。

引入特殊多边形之前, 先欣赏生活中常见到的丰富多彩的图案, 让学生体会数学图形的美,提高审美情趣. 称这样的多边形为正多边形,说明这种规则的、对称的图形非常重要,为下一节学习用正多边形铺设地板作好铺垫。

在多边形的对角线这一概念的认识和理解上,应突出它的作用,引导学生观察、发现,由于这种特殊的线段,把多

边形分割成了最基本的图形——三角形,目的是为多边形内角和公式的推导埋下伏笔。

(2)知识探究

为了加深对概念的理解,领会其运用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这一部分,我采取以下两个探究活动充分调动全体学生主动探索多边形的内角和公式:

探究活动1:多边形的对角线

先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。

思考并分小组讨论以下两个问题:①从多边形的一个顶点出发能画出几条对角线?②这样的画法把多边形分成了多少个三角形?

因为多边形内角和公式的推导就是从对角线和三角形入手的,因此,这两个问题就显得尤其重要。引导学生回想课前引入的过程, 图形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。

探究活动2:多边形的内角和

这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?

四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是2×180°……在肯定正确的答案和各种想法的同时,让学生寻找出最优办法。

《多边形的内角和说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式